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ABSTRACT

The specific impetus for this work was a conceptual design of a

submarine using the toroid as the pressure hull. This work is a

continuation of the work started by Bowen (1987). As such, it is hoped

that a better understanding of the behavior of a toroid under

hydrostatic pressure can be realized.

This work began with a review of efforts to solve complete toroidal

structures. A specific toroid was then modeled in the BOSOR4 computer

program to obtain displacements of the meridian under hydrostatic

pressure. Functions were then derived that described the general form

of these displacements. Using these functions as the assumed solution

for the energy method an energy balance was made and a program was

written to solve for the displacements of a generic toroid under

hydrostatic loading. "
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CHAPTER 1

INTRODUCTION

The purpose of this work was to examine the response of a thin

circular toroidal shell under external hydrostatic pressure. The

approach used was to model a specific toroid in the BOSOR4 computer

program (Bushnell, 1977) and then use the output results for

displacements to generate functions that modeled these displacements.

Using the functions obtained that model the displacements of the toroid

under hydrostatic pressure, an analytical analysis was performed with

these functions used as the assumed solution for the energy method. The

energy method generated the equations necessary to solve for the

displacements of a generic circular toroid. A program was then written

to solve the equations generated in the energy method so that

displacements for any specific toroid under hydrostatic pressure could

be obtained.

The analysis conducted only considers displacements in the linear

elastic range. For the shell being analyzed the following assumptions

were made:

1. The material of the shell is isotropic and homogeneous.

2. The thickness of the shell is constant.

3. The thickness of the shell is small compared to the radii of

curvature.

4. The displacements are symmetric about the X-Y plane (see

Figure 1.1).

5. T,n shell theory holds: normals to the undeformed surface

6



remain normal.

For a symmetrically loaded shell, with the above assumption of

symmetric deformation, a small displacement of any point can be resolved

into two components: v in the direction of the tangent to the meridian

and u in the direction of the normal to the middle surface (Timoshenko

and Woinowsky-Krieger, 1959). Therefore, the only displacements

discussed throughout the text will be u and v.

The toroid's geometry is straight forward but in order to be

consistent throughout the text the following definitions will be made

and are illustrated in Figure 1.1:

DEFINITIONS:

R : Major radius of toroid. Radius of rotation about the Z axis

of the circle of radius r to form the toroid.

z :Minor radius of toroid. Radius of the circle which is rotated

about the Z axis.

h : Thickness of the shell (assumed to be constant).

a : Angle of rotation measured counter clockwise from the X-Y

plane at a distance R + r from the origin.

Angle of rotation about the Z axis measured counter clockwise

from the positive X axis.

7



Figure 1. 1

Description of Geometry
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CHAPTER 2

COMPUTER MODELING

A computer solution for the displacements of the toroid under

external hydrostatic pressure was sought to determine the shape of these

displacements for a specific toroid. The computer program used to model

the toroid was BOSOR4 (Bushnell, 1977). The BOSOR4 computer program is

a hybrid finite difference-finite element program used to analyze

complex shells of revolution. This program was developed by David

Bushnell at Lockheed Missiles & Space Co., Palo Alto, California.

Although specific reference was not found that indicated that

BOSOR4 could adequately model a tot3id, it was believed that since

BOSOR5, a similar program that considers elastic-plastic material

behavior, had been used to model a toroid that BOSOR4 would also

adequately model this structure (Bushnell, 1985).

The specific toroid that was analyzed with BOSOR4 was the toroid

specified as the default values by Bowen (1987). The toroid geometry

used was as follows:

R - 8 inches

r - 2 inches

0 h - 0.02 inches

Young's Modulus, E - 30 x 106 psi

Poisson's Ratio, u - 0.3

Modeling the toroid in BOSOR4 was accomplished by taking advantage

of the symmetry of loading of the structure about the X-Y plane.

Therefore, only half of the structure was discretized in the program.

9



Because only half of the structure was modeled in the program, boundary

conditions had to be established at the symmetry points. The boundary

conditions imposed on the structure are as follows:

@ 8 - 0 radians

Tangential Displacement, (v) - 0.0

Rotation in the 8 direction, rLau - 0.0

@ 0 - II radians

Tangential Displacement, (v) - 0.0

Rotation in the 0 direction, [gM) - 0.0

The normal displacement (u) is defined as positive in the direction

of the outward pointing normal. The tangential displacement is defined

as positive in the direction of increasing angle 6 (See Figure 2.1).

Having the toroid modeled in BOSOR4, the program was run to

determine the pressure required to buckle the structure. The thought

being that if the buckling pressure predicted by BOSOR4 was consistent

with the buckling pressures predicted by theory then the pre-buckling

displacements generated by BOSOR4 could be used to predict the general

form of the displacements of a generic toroid.

The buckling pressure obtained from BOSOR4 for the toroid modeled

differed by less than 10% from the predicted buckling pressure as

presented by Sobel and Flgge (1967). Since the buckling pressure

obtained was consistent with the predicted pressure and the predicted

buckling pressure was substantiated experimentally by Almroth, Sobel and

Hunter (1969), it was concluded that the results from BOSOR4 for the

10



Figure 2.1

BOSOR4 Modeling
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pre-buckling displacements could be used to predict the general form of

the displacements of a generic toroid loaded under uniform hydrostatic

pressure.

In any finite difference or finite element program an investigation

into the number and spacing of the nodes used to describe the structure

must be undertaken to ensure that the structure is adequately described.

For this investigation, equal spacing of the nodes was used throughout.

To investigate the effect of node distribution, the number of node.

were doubled and thus the spacing was reduced by a factor of two. The

results for both the magnitude of the buckling pressure and the shape

and magnitude of the displacements did not change with the increase in

the number of nodes. It was therefore concluded that the structure was

adequately described and that the results obtained were valid.

Figure 2.2 is a graphical presentation of the normal displacement

(u) and figure 2.3 is a graphical presentation of the tangential

displacement (v) obtained from the BOSOR4 output for the toroid modeled.

12
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Figure 2.2

Normal Displacement (u)
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Figure 2.3

Tangential Displacement (v)
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CTLAPTER 3

CURVE FITTING

The next step in this study was to generate a function that would

analytically describe the normal and tangential displacements of the

toroid under hydrostatic loading.

First a check was made, using the BOSOR4 computer program, to

ensure the displacements were linearly dependent on the applied

pressure, as should be the case since this study was only considering

behavior of the toroid in the linear elastic region. As can be seen

from figure 3.1 the normal displacement is indeed linearly dependent on

the applied pressure. Although not included here, the tangential

displacement is also linearly dependent on the applied pressure.

To generate a function that would adequately describe the

displacements, a form of the displacements must be assumed and then a

curve fitting technique must be used to fit the data to this assumed

form.

Since the displacements are considered to be symmetric about the

X-Y plane and considering the way in which the positive direction for

the normal displacement (u) and the tangential displacement (v) were

defined in Chapter 2, the following statements can be made:

For the normal displacement (u),

u(O) - u(-O) (3.1)

which is the definition of an odd function.

For the tangential displacement (v),

v(8) - -v(-8) (3.2)

15



Figure 3. 1

Incremental Loading
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which is the definition of an even function.

The functions assumed to describe the displacements were Fourier

Series for both the normal (u) and tangential (v) displacements. Since

both the normal and tangential displacements have a period of 2tr (the

arc length of the circular cross section) and noting the above

statements about even and odd functions, the Fourier Series for the

displacements can be written as follows:

0!

OD
u() - ! + an cos [nx (3.3),

v(P) - I bn s in L(3.4).
n-1 M

For the displacements to be symmetric about the X-Y plane, or a

half period of .e function, x and L can be defined as follows:

x -rt

L - r

From these definitions, u and v can be rewritten as:

M

u(8) - + I an cos (ne) (3.5),
ZI-1

v(6) - Z bn sin (nO) (3.6).
n-I

While the Fourier series described above will give an exact

representation of the displacements, the goal of a curve fitting routine

should be to determine how many terms of the series must be used to

17



adequately describe the function. To determine the number of terms

required to describe the displacements a least squares curve fitting

program was written to be used in conjunction with the output data from

BOSOR4. The programs were adapted from a curve fitting routine

presented by James, Smith and Wolford (1977) and are included in

Appendix A.

Using these programs to determine the coefficients of the Fourier

Series it was found that five terms were inadequate to describe the

displacements, as can be seen graphically in Figure 3.2, and it was

determined that ten terms were required to adequately describe the

normal displacements, (See Figure 3.3), and nine terms were required to

describe the tangential displacements. Although only the normal

displacement (u) is presented in Figures 3.2 and 3.3 similar results

were obtained for the tangential displacement (v).

With the number of terms determined that are required in the

Fourier series u and v can be written in final form as:

9
u(M) - ao + Zan cos (nW) (3.7),

n-1

v(B) - Xbn sin (n8) (3.8).
n-i

These definitions of u and v will be used in the next section as the

assumed forms of the displacements of the toroid.

1
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Figure 3.2
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Figure 3. 3
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CHAPTER 4

ENERGY METHOD

4.1 Introduction:

To determine the displacements of a structure when it is subjected

to an external load, the external load must be balanced by the internal

forces of the structure caused by the external load.

For this study, the method of minimizing the total potential

energy, as described by Shames and Dym (1985), was used. The energy

method was cho en in hopes of avoiding the singularities in the solution

at 9 - ± (Reissner, 1963 and Senjanovic , 1972). The rotal potential
2

energy is defined as:

I- U - W (4.1.1)

where U and W are defined as;

U : internal energy of the structure,

W : potential energy of the applied loads.

To determine the minimum potential energy, and thereby determine the

displacements caused by the external load, the first variation of the

total potential energy is set to zero.

6 (1) - 0 (4.1.2)

The first variation of the total potential energy can be defined as the

following partial differential equation:

an 0 (4.1.3)
x

where x is any general parameter used to describe U and W.

Since the first variation of the total potential energy is set to zero,

21



the equation to be solved to determine the displacements of the

structure can be defined as;

aw au (4.1.4).
x Bx

In order to solve the above equation for the displacements caused by the

applied load, U and W must be defined as functions of the disi-acements.

As described by Bushnell (1984), the strain energy of the structure

can be defined as follows:

U - U + U (4.1.5)

where;

4 U : strain energy due to elongation and changes ins

curvature,

U : strain energy due to constraints or boundary conditions.C

For the toroid, the symmetry about the X-Y Plane will be taken

advantage of and only half of the structure will be analyzed. The

following additional geometric definitions are required for the analysis

(See Figure 4.1).

DEFINITIONS:
R

a Ratio of the major and the minor radius of the toroid. a -

r : Distance from the Z axis to the meridian of the toroid.T

r - R + r cos(9) - r( a + cos (e))

r: Radius of curvature in the 9 direction.2

r
r T R + r cos(8)r m --

2 cos(a) cos(9)

22



Figure 4. 1

Additional Geometry
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4.2 Strain Energy:

The strain energy due to elongation and changes in curvature can be

defined as:

Us a e dv , i,. - 0 , (4.2.1).

The strain energy due to constraints, U , will be addressed later.
C

Because this study is only considering hydrostatic loading of the

toroid, the loading will always be normal to the surface of the toroid.

Therefore, there will not be any shear stresses or shear resultants from

the loading imposed.

a0U - CE - 0, ifi~ltj iii j

The 8 and 0 directions are thus principle directions and the strains can

be represented by reference surface strains and changes in curvature.

The strain energy can be defined in terms of forces and moments which

are defined as an integral of the stresses through the thickness of the

shell. The strain energy can then be represented by a surface integral

as follows:

N s ( + M ) ds (4.2.2).U - f • Nj ij Mji

For the case of hydrostatic loading the strain energy becomes:

U- £ f (( 9  + N0,0 ) + (M9i 6 + M IC Jds (4.2.3)

where the forces and moments are defined as follows (Timoshenko and

Woinowsky - Krieger, 1959):

N - j [1 - 3 dz (4.2.4),

N - f t 1 - 2 ] dz (4.2.5),

24



me - ) dz (4.2.6),

M- f ac z 1 ] dz (4.2.7).

Since the assumption has been made that normals to the undeformed

middle 3urface remain normal, the strains as a function of thickness can

be expressed in terms of reference surface strains and changes in

curvature (Timoshenko and Woinowsky-Krieger,1959).

S- e z X (4.2.8)
t

" C4 z X4 (4.2.9)

The terms, e and , represent the total strain in the 0 and
t t

directions and s8 and x represent the changes in curvature of the

reference surface.

From Hook's Law the stresses can be defined as follows:

a E 2  + Vet) (4.2.10)

a - 2 e+V8 (4.2.11)(1-u2 ) 4t t

substituting the expressions for c£ and e ,

a - E 2 e a + ue -z( IC + VI )) (4.2.12),

E2 e + V E "zC z + vice (4.2.13).

Taking the middle surface as the reference surface and neglecting

the terms, and , as small as compared to unity, integration over
r r

2
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the thickness of the shell can be represented by:

N ,-f +  E ( f # + e ,-C, + wI/O, dz (4.2.14),

-h/2 (1-V ) I

N h( ) e + vUe (4.2.15),[ -)
N4 .f h E 2 + vye -z( ,4 + 11K dz (4.2.16),h/2 (l-V )

N- Eh [ + v, ] (4.2.17),

M f +h2E e + e z(C+vO zd (4.2.18),
-h/2 (1-V ) I zd

h/2 (I-j ) I - )
M 0  - Eh3 PC + vr. J (4.2.19),

12(1-v 2 )

+hl2E

M4 -hT E2 ' + ye6 "~x + '.8 JJ Z dz (4.2.20),

1 2-(" Eh [ , + VO6 ] (4.2.21).

Combining the expressions for the forces and the moments and

substituting these back into the expression for the strain energy, the

strain energy becomes:

U - zf E e + 2e +e f2

Eh 3_ + 2 r. + , J ds (4.2.22).
12(l-v 6

4.2.1 Strains:

The next step is to define the surface strains in terms of the

displacements u and v. This will be accomplished by following the

26



presentation by Timoshenko and Woinowsky-Krieger,(1959).

Considering an element AB of the meridian, (See Figure 4.2), the

strain in the 9 direction can be defined as follows:

f due to v,

8vv + d-v i av
" I a- (4.2.1.1)
r dO r 88-

e due to u can be represented by the average change in length of

the element divided by the original length,

+ Lu 
( 2 j- di J dO
r dO

The component, I -u dO , will be neglected as a small quantity of higher2 a8

order. The total strain in the 0 direction can then be represented as:

"y r 1 (4.2.1.3).

The strain in the 4 direction can be defined as the change in r

due to u and v divided by the original length of the element (See Figure

4.3).

r - u cos(9) - v sin(O) ) d.b and

L u cos(9) - v sin(9) ) d4
r T (4.2.1.4),

T

r (a + cos(O)i u cos(O) v sin(O) (4.2.1.5).

4.2.2 Change in Curvature:

4 The change in curvature of the middle surface will now be defined.

Again considering the element AB of the meridian, (See Figure 4.2),

the rotation in the 9 direction can be defined as follows:

27



Figure 4.2

Differential Element
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Figure 4. 3

Radia. Displacement

r

29



due to v,

. X dO (4.2.2.1)
r

6 due to u,
au dO

o - 1 au dO (4.2.2.2).

r r 89

The total rotation in the 9 direction is,

-" v - ) di (4.2.2.3).

Ths change in curvature in the 9 direction can be represented by the

change in rotation in the 9 direction divided by the undeformed arc

length in the 9 direction.

1abe . 1 8av 82u (
K8 r 8 2O (4.2.2.4)r r a 8 88 2

Because the assumption has been made that the deformations will be

symmetric, the rotation in the 0 direction will be opposite to the

rotation in the 9 direction in magnitude and rotated into the 0 surface

by sin (9).

- - sin (M) - L v sin (9) do (4.2.2.5)

Although the rotation in the 0 direction is constant in , it does vary

in the 0 direction. Therefore, the change in curvature due to loading

can be represented by the rotation in the 0 direction divided by the

undeformed arc length in the 0 direction.

- r (a + cos(9)) do (4.2.2.6)

30



and substituting the expression for fi

sin(O) 8u 1
.0 r2 (a + cos(8)) I - v (4.2.2.7).

4.2.3 Constraint Energy:

A complete toroid has no constraint or boundary conditions when

loaded only by hydrostatic pressure. However, since only half of the

toroid is being analyzed here, boundary conditions must be imposed at

the symmetry points, 0 - 0 and 9 - w. The boundary conditions that are

required at these two points are:

The vertical displacement is zero, v - 0,

and the rotation in the 8 direction is zero, au - 0.

As Bushnell (1984) points out the constraint energy can be accounted for

with the introduction of Lagrange multipliers and can be represented as

follows:

U - A0 u(O) + A v(O) + X -(W) + X v(0) (4.2.3.1).

In this formulation of the constraint energy the Lagrange multipliers

are unknowns and are solved for along with the disjlacements when the

total potential energy is minimized. The actual form of the constraint

energy will be discussed later.

4.3 Potential Energy of Applied Loads:

The potential energy of the applied loads is simply the work done

by these loads, which can be represented by the applied load multiplied

31



by the deflection in the direction of the applied load. For the case of

hydrostatic loading, the applied load is always normal to the surface

and the displacement in the direction of this load is -u for this study.

Therefore, the potential energy of the applied hydrostatic load can be

represented as:

W- - P u ds (4.3.1)

where P is the external hydrostatic pressure applied and is

positive in the direction of -u.

4.4 Minimization of the Total Potential Energy:

From section 4.1 it was shown that to minimize the total potential

energy the following equation needed to be solved;

an - 0 (4.4.1),

and it was shown that the above equation could be represented by

the following equation:

8W _ ua- ax (4.4.2).
£ 

i

To present the form of the above equations the following simplifications

in notation will be used:

au a u

UV. av36 'e 2g ag

Eh 
Eh

3

(1-u ) 12(1-u )

32



4.4.1 Internal Energy:

Since it has been shown that none of the terms in the internal

energy depend on 0 the surface integral ca" be rewritten and integrated

with respect to 0.

U- i.f Eh e 2 + 2u e E1 + e41 2

12(1 -2  (K 2 + 2ue. 1C + M' )r( a + cos(U )d#i rdO (4.4.1.1)12(1-v' )  a0

Which when integrated with respect to 0 becomes,

U -wr 2 -n 2 + 2ve C + ( -2

Eh3  
(m + 2 ux K + r C a + cos())de (4.4.1.2).

12(1-v )

Using the above simplifications in notation and substituting the

expressions presented in section 4.2.1 and 4.2.2 the strain energy

becomes:

u -f r 2 ( C u2 + 2uv' + v'2 ) +

2v c (u'+uv')cos(9) - (uv + vv')sin(O))0 (a + cos(8))

+ a )2 C u cos2 () - 2uv cos(O)sin(O)++ a + c os(e)2

v 2sin2 () ) - [ cv'2- 2v'u"+ u' ) +

2 v sin(O) utu l +
(a + cos(6)) ( v'u'- v' -u ' +v' +

33



sin)2 (9) 2up 2 2u'v + v2)] (a+cos(e))de (4.4.1.3).
(a + coso()) '2

The above equation represents the strain energy, Us . However, for

minimization of the total potential energy the expression that is needed
aU

is

axi 
iau fr 2ua Ov' u + 2v u av' V'

' u ~ v' - ' +v +v )ne2u.x) + 21
ai i i i 8 i i

2&_______ ((2 au + v' Vau )cs o v- IV+u By'V +Byv)sn
(a + cos(9)(2~ +UT - +vi )cos 9)(i- Tv- i )T sin(T6)T

1 au 2 Iy 8V 8V 22 (2ul cos (0)-2(uuT +v.- )cos(O)sin(O)+2v. sin (a)
(a + cos())Ox ix ax x
D ' O2 v' , u' ' Ov' ,u'
r2 [ (2v'L - 2(v'L + u'1')+ 2u' -- ) +

2 v sin() [v,8U'u8V' 8V' v,Ov ,u' .,,8u' a u'' pav
(a + cos())i i Txi ax x V i a i ) +

sin 2 (0) a,- dv u 8v f e(F)2(2u y- -2(u'- +v a)+2v-i ~o(~d (44..4(a +cos6))i axi axi axJOd

The above equation represents the first term on the right hand side of

the following equation that will be needed to minimize the total

potential energy and thereby solve for the displacements,

--- + au (4.4.1.5).
x Tx +x

4.4.2 External Energy:

Similar to the internal energy, the external energy does not depend

on 0 and the surface integral can be rewritten and integrated with

0 respect to 4-

W ~ P U r( a + cos(6) d r dO (4.4.2.1)
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Which when integrated with respect to 0 becomes,

W - -2Pwr2  u ( a + cos(O) ) dS (4,4.2.2).

For minimization of the total potential energy the expression that is

needed is aW
axi

8W 2Pr a ( a + cos(O) ) dO (4.4.2.3)

This completes the expressions needed for the minimization of the total

potential energy, with the exception of the constraint energy, U
c

4.5 Assumed Functions:

In Chapter 3 it was shown that the displacements u and v could be

represented by a Fourier series. These functions of # will be used as

the assumed form of the displacements and the coefficients of the

Fourier series will be solved for from the equations presented in the

minimization of the total potential energy. The assumed functions for u

and v are different from those presented in Chapter 3 in that the

constant term in the expression for u has been included inside the

summation.

9

u(8) - Xan cos (nO) (4.5.1),
n-0

9
v(9) - I bn sin (n8) (4.5.2).

n-0

The above expressions for u and v involve 19 unknown coefficients that0

will have to be solved for to describe the displacements.

Using these expressions for u and v the constraint energy, U
C
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discussed in section 4.2.3 can now be addressed. The constraints neoded

were the boundary conditions at the symmetry points, 8 - 0 and 8 -

These boundary conditions are:

v - 0. Since sin(n8) - 0, for 0 - 0 and sin(nr) - 0, for all n,

these boundary conditions are satisfied by the assumed form of v

and additional constraints are not needed.

a 0 Sin Z n an sin (no), then - 0 at 8 - 0 and
n-0

9 - x for the same reasons as stated above for v.

Since no additional constraints are needed to meet the boundary

conditions, Lagrange multipliers are not needed and the constraint

energy, U - 0.
C

4.6 Solution:

With the assumed forms of the displacements defined, the problem is

now restricced to solving for the 19 unknown coefficients of the Fourier

series. Using the following substitutions the equations can be set up

to solve for these coefficients:

9
u - Zan cos (no) (4.6.1),

n-0
9

u'- - n an sin (nO) (4.6.2),
n-0

9

u" - Z n 2 an cos (nO) (4.6.3),
n-0

9

v- Zbrn sin (no) (4.6.4),
n-0

9

v' - Z n bn cos (nO) (4.6.5).
n-O
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Substituting the above expressions into the following equation will then

represent the 19 equations needed to solve for the 19 unknown

coefficients:

aW au (4.6.6).
i 

i

Which can be represented in matrix notation as follows;

[ D ] - [ F ] [ x ] (4.6,7)

where the above terms are defined as:
OW

D a 19 x l column consisting of the terms, a-
i

0 8Us

F a 19 x 19 matrix consisting of the terms, -'

x : a 19 x I column consisting of the terms, an and bn. Where x

through x10 are the 10 an's and x 1 through x19 are the 9

bn's.

To solve for the x 's, the coefficients of the Fourier series, thei

following matrix operation needs to be performed:

[ xi - ( F ]-1 [ D ] (4.6.8).

The individual elements in F can be determined by performing the
au

integration from 0 to i of the expression for - as presented in
x

I

section 4.4.1. Similarly , the individual elements in D can be

determined by performing the integration of the expression for a- as

presented in section 4.4.2. To perform the above integrations, as well

as inverting the F matrix and solving for the x 's, a program was
I

written. This "Toroid Program" is listed in Appendix B.
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The "Toroid Program" was run to compare the results with those

obtained using BOSOR4. As can be seen from Figures 4.4 and 4.5, the

results obtained for the displacements are comparable to those obtained

from BOSOR4 and are of the same general shape. Additionally, when the

internal energy of the results are compared, the "Toroid Program" is

only 4.3% greater than that of the BOSOR4 solution. This difference can

be accounted for by the selection of the functions chosen to represent u

and v. The functions chosen for u and v only model the displacements

and do not model the change in displacements or the curvature of the

toroid.

4.7 Forces and Moments:

The next step was to look at the predictions for the forces, N9 and

N and the moments, M8 and M and compare them with the results from

BOSOR4.

The forces and moments predicted by the "Toroid Program" did not

corollate well with the results obtained from BOSOR4. As can be seen

from Figures 4.6 and 4.7, the average of the predicted forces is

approximately the same as the forces obtained from BOSOR4. However, as

can be seen from Figures 4.8 through 4.11, the predicted moments were

several orders of magnitude less than those obtained from BOSOR4.

3
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Figure 4.4

Normal Displacement (u)
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Figure 4.5

Tangential Displacement (v)
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Figure 4.6

N 0vs 6
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Figure 4.7

N 0vs a
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Figure 4. 8

h a vs 8 (BOSOR4)
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Figure 4.9

He vs 8 (Toroid Program)
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Figure 4.10

M, vs 9 (BOSO,4)
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M vs 9 (ToroLd Program)
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CHAPTER 5

CONCLUSIONS

As was shown in Chapter 4, using the assumed functions for the

displacements in the energy method produced results for the

displacements that were consistent with those obtained from BOSOR4.

However, it was also shown that the "Toroid Program" was very poor at

predicting the forces and moments of the toroid.

The differences can be explained by looking at what the assumed

functions used for the displacements represents. The assumed functions

for u and v are fairly good models of the displacements but were not

modeled to meet the slope or curvature of the displacements except at

the end points, where 6 - 0 and 6 - r. This resulted in good

predictions for u and v but inaccurate predictions for u', u'' and v',

all of which are contained in the expressions for the forces and

moments.

Some thought has been given to what other assumed functions might

be used to model the displacements that would more accurately predict

the forces and moments. It is believed that a complete Fourier series

representation, instead of just an odd or even series, might better

predict the slope and curvature of the displacements and therefore the

forces and moments. To ensure that the complete Fourier series meets

the boundary conditions, Lagrange multipliers would be required to

describe the constraint energy (See section 4.2.3). This is an area

that is left for further investigation. If a complete Fourier Series
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representation does not adequately predict the forces and moments the

next step would be to write some kind of finite element or finite

difference program to solve this problem.

Since the program written does model the displacements and produces

results that are consistent with those obtained from BOSOR4, the "Toroid

Program" can be used as a preliminary design tool without having to

resort to a very complex and expensive computer code such as BOSOR4.

Unfortunately the "Toroid Program" is restricted to analyzing only

toroidb under hydrostatic loading. Complexities in describing the

geometry of a general shell of revolution will quickly lead the designer

to the more complex computer codes like BOSOR4.

It is also believed that the program written could be modified to

incorporate nonlinear terms and then be used to predict buckling loads.

This is again an area that will be left for further investigation.
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APPENDIX A.

CURVE FITTING PROGRAMS

The programs listed were used in conjunction with the out put from

BOSOR4 to determine the coefficients of the assumed Fourier Series.

Both programs are written in Fortran 77.

Program 1 determines ten coefficients for an odd Fourier Series

that is symmetric about 8 equal to w, to fit the data from BOSOR4 for

the normal displacement of the shell meridian.

Program 2 determines nine coefficients for an even Fourier Series

that is anti-symmetric about 9 equal to w, to fit the data from BOSOR4

for the tan&ential displacement of the shell meridian.

PROGRA ISTING

C CURVE FITTING PROGRAM

C LEAST SQUARES CURVE FITTING

C234567

INTEGER I,J,M,N

REAL X(100),Y(1O0),F(lO0,10),FT(10,100),A(1O,l1),B(10)

REAL FI,F2,F3,F4,F5,F6,F7,F8,F9,FlO,C(1O)

EXTERNAL Fl,F2,F3,F4,F5,F6,F7,F8,F9,Fl0

N - 100

M - 10

C READ X-Y VALUES OF DATA POINTS

DO 10 I-1,N

READ (UNIT - 2,FMT - *) X(I)

READ (UNIT - 3,FMT - *) Y(I)
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10 CONTINUE

C GENERATE THE F MATRIX

DO 20 I-1,N

F(I,2) -F2(X(I))

F(I,3) -F2CX(I))

F(I,3) -F4(X(I))

F(I,5) -F5(X(I))

F(I,6) -F6(X(I))

F(I,7) -F7(X(I))

F(I,8) -F8(X(I))

F(I,9) -F9(X(I))

F(I,10) -FIO(X(I))

020 CONTINUE

C GENERATE THE TRANSPOSE OF THE F MATRIX

DO 30 I-1,N

DO 30 J-1,M

FT(J,I) - F(I,J)

30 CONTINUE

C DETERMINE COEFFICIENT MATRIX A OF SIMULTANEOUS

C EQUATION SYSTEM

CALL MATMPY(FT,F,A,MN,M)

C DETERMINE COLUMN OF CONSTANTS FOR SIMULTANEOUS

C EQUATION SYSTEM

CALL MATMPY(FT,Y,B,M,N,1)

DO 40 I-Im

A(I,M+l) - B(I)

40 CONTINUE

C DETERMINE A(n) VALUES BY SOLVING SIMULTANEOUS EQUATIONS

0 C USING CHOLESKY METHOD

MP1 - M + 1

CALL CHLSKY(A,M,MPI,C)

C WRITE OUT THE A(n) VALUES
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WRITE (UNIT -4FMT - *)(IC(I),I-1,M)

END

C

C DETERMINES MATRIX C AS PRODUCT OF A AND B MATRICES

SUBROUTINE MATMPY(A,B,C,M,N,L)

REAL A(M,N),B(N,L),C(M,L)

DO 10 I-1,M

DO 10 J-1,L

C(I,J) - 0.

DO 10 K-1,N

C(I,J) - C(I,J)+A(I,K)*B(K,J)

10 CONTINUE

END

C DEFINE THE FUNCTIONS

C

C DEFINE THE A(O) FUNCTION

REAL FUNCTION F1(X)

REAL X

Fl - 1.0

END

C DEFINE THE A(1) FUNCTION

REAL FUNCTION F2(X)

REAL X

F2 - COS(X)

END

C DEFINE THE A(2) FUNCTION

REAL FUNCTION F3(X)

REAL X

F3 - COS(2.*X)

END

C DEFINE THE A(3) FUNCTION

REAL FUNCTION F4(X)

REAL X

52



F4 - COS(3.*X)

END

C DEFINE THE A(4) FUNCTION

REAL FUNCTION F5(X)

REAL X

F5 - COS(4.*X)

END

C DEFINE THE A(5) FUNCTION

REAL FUNCTION F6(X)

REAL X

F6 - COS(5.*X)

END

C DEFINE THE A(6) FUNCTION

0 REAL FUNCTION F7(X)

REAL X

F7 - COS(6.*X)

END

C DEFINE THE A(7) FUNCTION

REAL FUNCTION F8(X)

REAL X

F8 - COS(7.*X)

END

C DEFINE THE A(8) FUNCTION

REAL FUNCTION F9(X)

REAL X

F9 - COS(8.*X)

END

C DEFINE THE A(9) FUNCTION

REAL FUNCTION FIO(X)

REAL X

F1O - COS(9.*X)

END

C
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SUBROUTINE CHLSKY(A,N,M,X)

REAL A(10,11),X(10)

C CALCULATE FIRST ROW OF UPPER UNIT TRIANGULAR MATRIX

DO 10 J-2,M

A(1,J) - A(1,J)/A(1,1)

10 CONTINUE

C CALCULATE OTHER ELEMENTS OF U AND L MATRICES

DO 60 I-2,N

J - I

DO 30 II-J,N

SUM - 0.

JM. - J-1

DO 20 K-1,JMI

SUM - SUM+A(II,K)*A(K,J)

20 CONTINUE

A(II,J) - A(II,J)-SUM

30 CONTINTUE

IPI - I+i

DO 50 JJ-IPI,M

SUM - 0.

IMi - I-i

DO 40 K-1,IM1

SUM - SUM+A(IK)*A(K,JJ)

40 CONTINUE

A(I,JJ) - (A(I,JJ)-SUM)/A(I,I)

* 50 CONTINUE

60 CONTINUE

C SOLVE FOR X(I) BY BACK SUBSTITUTION

X(N) - A(N,N+I)

* L-N-1

DO 80 NN-1,L

SUM - 0.

I - N-NN
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IP1 - 1+1

DO 70 J-IPI,N

SUM - SUM+A(I,J)*X(J)

70 CONTINUE

X(I) - A(I,M)-SUM

80 CONTINUE

END
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PROGRAM LISTING:

C CURVE FITTING

C LEAST SQUARES CURVE FITTING

C234567

INTEGER I,J,M,N

REAL X(100),Y(100),F(100,9),FT(9,100),A(9,10),B(9)

REAL FI,F2,F3,F4,F5,F6,F7,F8 ,F9,C(9)

EXTERNAL FI,F2,F3,F4,F5,F6,F7,F8,F9

N- 100

M- 9

C READ X-Y VALUES OF DATA POINTS

DO 10 I-1,N

READ (UNIT - 2,FMT - *) X(I)

READ (UNIT - 5,FMT - *) Y(I)

10 CONTINUE

C GENERATE THE F MATRIX

DO 20 I-1,N

F(I,2) - F2(X(I))

F(I,2) - F2(X(I))

F(I,3) - F3(X(I))

F(I,4) - F4(X(I))

F(I,5) - F5(X(I))

F(I,6) - F6(X(I))

F(I,7) - F7(X(I))

F(I,8) - F8(X(I))
F(I,9) - F9(X(I))

20 CONTINUE

C GENERATE THE TRANSPOSE OF THE F MATRIX

DO 30 I-1,N

DO 30 J-1,M

FT(J,I) - F(I,J)

30 CONTINUE
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C DETERMINE COEFFICIENT MATRIX A OF SIMULTANEOUS

C EQUATION SYSTEM

CALL MATMPY(FT,F,A,M,N,M)

C DETERMINE COLUMN OF CONSTANTS FOR SIMULTANEOUS

C EQUATION SYSTEM

CALL MATMPY(FT,Y,B,M,N,l)

DO 40 I-1,M

A(I,M+1) - B(I)

40 CONTINUE

C DETERMINE B(n) VALUES BY SOLVING SIMULTANEOUS EQUATIONS

C USING CHOLESKY METHOD

MP1 - M + 1

CALL CHLSKY(A,M,MPI,C)

C WRITE OUT THE B(n) VALUES

WRITE (UNIT - 4,FMT - *)(I,C(1),I-1,M)

END

C

C DETERMINES MATRIX C AS PRODUCT OF A AND B MATRICES

SUBROUTINE MATMPY(A,B,C,M,N,L)

REAL A(M,N),B(N,L),C(M,L)

DO 10 I-1,M

DO 10 J-1,L

C(I,J) - 0.

DO 10 K-1,N

C(I,J) - C(I,J)+A(I,K)*B(K,J)

10 CONTINUE

END

C

C DEFINE THE FUNCTIONS

C

C DEFINE THE B(1) FUNCTION

REAL FUNCTION F1(X)

REAL X
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Fl - SIN(X)

END

C DEFINE THE B(2) FUNCTION

REAL FUNCTION F2(X)

REAL X

F2 - SIN(2.*X)

END

C DEFINE THE B(3) FUNCTION

REAL FUNCTION F3(X)

REAL X

F3 - SIN(3.*X)

END

C DEFINE THE B(4) FUNCTION

REAL FUNCTION F4(X)

REAL X

F4 - SIN(4.*X)

END

C DEFINE THE B(5) FUNCTION

REAL FUNCTION F5(X)

REAL X

F5 - SIN(5.*X)

END

C DEFINE THE B(6) FUNCTION

REAL FUNCTION F6(X)

REAL X

F6 - SIN(6.*X)

END

C DEFINE THE B(7) FUNCTION

REAL FUNCTION F7(X)

REAL X

F7 - SIN(7.*X)

END

C DEFINE THE B(8) FUNCTION
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REAL FUNCTION F8(X)

REAL X

FS - SIN(8.*X)

END

C DEFINE THE B(9) FUNCTION

REAL FUNCTION F9(X)

REAL X

F9 - SIN(9.*X)

END

C

SUBROUTINE CHLSKY(A,N,M,X)

REAL A(9,1O),X(9)

C CALCULATE FIRST ROW OF UPPER UNIT TRIANGULAR MATRIX

* DO 10 J-2,M

A(1,J) - A(1,J)/A(l,l)

10 CONTINUE

C CALCULATE OTHER ELEMENTS OF U AND L MATRICES

DO 60 I-2,N

DO 30 II-J,N

SUM - 0.

.314 - J-1

DO 20 K-1,JM1

SUM - SUM+A(II,K)*A(K,J)

20 CONTINUE

A(II,J) - A(II,J)-SUM

30 CONTINUE

IPI - 1+1

DO 50 JJ-IPI,M

su 51- 0.

1141 - I-1

DO 40 K-1,IM1

SUM - SUM+A(I,K)*A(K,JJ)
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40 CONTINUE

A(I,JJ) - (A(I,JJ)-SUM)/A(I,I)

50 CONTINUE

60 CONTINUE

C SOLVE FOR X(I) BY BACK SUBSTITUTION

X(N) - A(N,N+I)

L - N-i

DO 80 NN-i,L

SUM - 0.

I - N-NN

IPi - I+l

DO 70 J-IP1,N

SUM - SUM+A(I,J)*X(J)

70 CONTINUE

X(I) - A(I,M)-SUM

80 CONTINUE

END
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APPENDIX B.

TOROID PROGRAM

This program is set up to determine the ten coefficients of the

even Fourier Series for the normal displacement, (u), of the toroid and

the nine coefficients of the odd Fourier Series for the tangential

displacement, (v), of the toroid.

To determine the shape and magnitude of the normal and tangential

displacement of the toroid the following equations are used:

u - a cos(n6)
n0n- 0

9
v - I b sin(n8)

n1

The program was written in Fortran 77. The subroutines used were

adopted from those presented by Dyck, Lawson and Smith (1984).

PROGRM LISTING:

C TOROID PROGRAM

INTEGER I,N

REAL F(19,19),D(19),C(19)

REAL E,V,R3,RL,H,P,A1,A2,A3,A

LOGICAL ERROR

EXTERNAL FA,FA1,FB,FB1,SIMP

PRINT *,'This Program will calculate the coefficients'

PRINT *,'of the Fourier Series for the Normal and'
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PRINT *,'Tangential displacements of a thin, circular'

PRINT *,'toroidal shell when loaded by uniform'

PRINT *,'external hydrostatic pressure.'

PRINT *, '

PRINT *,'Enter Youngs Modulus, E(psi) -'

READ * E

PRINT *,'Enter Poissons Ratio, V -'

READ *,V

PRINT *,'Enter Toroid radius, R(in) -'

READ *,RB

PRINT *,'Enter Circular Section radius, r(in) -'

READ *,RL

PRINT *,'Enter Shell thickness, h(in) -'

* READ *,H

PRINT *,'Enter hydrostatic pressure, P(psi) -'

READ *,P

PI - 4.0*ATAN(l.O)

N - 19

A -RB/RL

Al-2.0*PI*E*H/(l.-V**2)

A2--2.0*PI*P*RL**2

A3-(-PI*E*(H**3))/(6.0*(RL**2)*(I.0-V**2))

C GENERATE THL D CuLL'/

D(l)-A2*PI*A

D(2)-A2*PI/2.0

DO 30 I-3,N

D(I)-O.O

30 CONTINUE

C GENERATE THE F MATRIX

DO 40 I-I,N

PRINT *,'INTEGRATING MATRIX COLUMN',I

F(l,I) - Al*SIMP(FA,Pi,V,A,I,0.0)+A3*SIMP(FAl,PI,V,A,I,0.0)

F(2,I) - Al*SIMP(FA,PI,V,A,I,l.0)+A3*SIMP(FAI,PI,V.A,1,1.0)
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F(3,I) - Al*SIMP(FA,PI,V,A,I,2.0)+A3*SIMP(FAI,PI ,V,A, 1,2.0)

F(4,I) - Al*SIMP(FA,PI,V,A,I,3.O)+A3*SIMP(FAI,PI ,V,A,I,3.0)

F(5, I) - A1*SIMP(FA,PI,V,A,I,4.0)+A3*SIMP(FA1,PI,V,A, 1,4.0)

F(6,I) - A1*SIMP(FA,PI,V,A,I,5.0)+A3*SIMP(FA1,PI,V,A, 1,5.0)

F(7,I) - Al*SIMP(FA,PI,V,A,I,6.0)+A3*SIMP(FA1,PI,V,A, 1,6.0)

F(8, I) - A1*SIMP(FA,PI,V,A, I, 7.0)+A3*SIMP(FA1, P1,V,A, 1,7.0)

F(9, I) - A1*SIMP(FA,PI,V,A, 1,8 .O)+A3*SIMP(FAI,PI ,V,A, 1,8.0)

F(1O,I) - AL*SIMP(FA,PI,V,A,I,9.O)+A3*SIMP(FAI,PI ,V,A,I ,9 .0)

F(11,I) - Al*SIMP(FB,PI,V,A,I,1.O)+A3*SIMP(FB1,PI ,V,A,I,1.0)

F(12,I) - Al*SIMP(FB,PI,V,A,I,2.0)+A3*SIMP(FB1,PI ,V,A,I,2.0)a

F(13,I) - A1*SIMP(FB,PI,V,A,1,3.0)+A3*SIMP(FB1,PI ,V,A, 1,3.0)

F(14,I) - Al*SIMP(FB,PI ,V,A, I,4.0)+A3*SIMP(FB1,PI ,V,A,I ,4.0)

F(15,I) - Al*SIMP(FB,PI,V,A,I,5.O)+A3*SIMP(FB1,PI ,V,A,I,5 .0)

F(16,I) - Al*SIMP(FB,PI,V,A,I,6.0)+A3*SIMP(FB1,PI ,V,A,I ,6.0)

F(17 ,I) - Al*SIMP(FB,PI,V,A,I,7.0)+A3*SIMP(FB1,PI,V,A,I ,7 .0)

F(18, I) - Al*SIMP(FB,PI,V,A,I,8 .0)+A3*SIMP(FB1,PI,V,A,I ,8 .0)

F(19,I) - Al*SIMP(FB,PI,V,A,I,9.O)+A3*SIMP(FBl,PI,V,A, 1,9.0)

40 CONTINUE

C CONVERT THE LINEAR SYSTEM TO A TRIANGULAR SYSTEM

CALL GAUSS(F,D,N,ERROR)

IF (ERROR) THEN

PRINT *,'MATRIX GENERATED IS SINGULAR,'

PRINT *,'SOLUJTION IS NOT POSSIBLE.'

ELSE

C SOLVE THE TRIANGULAR LINEAR SYSTEM

CALL BSOLVE(F,D,N,C)

PRINT *,'THE FOLLOWING ARE THE 10 COEFFICIENTS FOR THE'

PRINT *,'NORMAL DISPLACEMENT OF THE TOROID.'

PRINT *,'

PRINT *,'USE IN THE SERIES; An*COS(n*theta/r)'

PRINT ,

PRINT ,'n An n

+ An'
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PRINT *,(I-1,C(i),I-1,1o)

PRINT *, ' '

PRINT *,'THE FOLLOWING ARE THE 9 COEFFICIENTS FOR THE'

PRINT *,'TANGENTIAL DISPLACEMENT OF THE TOROID.'

PRINT *,' ' i

PRINT *,'USE IN THE SERIES; Bn*SIN(n*theta/r)'

PRINT *,' '

PRINT*,' n Bn n

+ Bn' 4

PRINT *,(I-1O,C(I),I-11,19)

ENDIF

END

C

C THIS SUBPROGRAM FUNCTION INTEGRATES THE MATRIX FUNCTIONS

C DEFINED BY USING SIMPSON'S RULE AS AN APPROXIMATION

REAL FUNCTION SIMP(F,PI,V,A,N,Z)

REAL PI,F,H,SUMEVN,SUMODD,X,B

INTEGER I

EXTERNAL F

B-0.0

H-PI/100.

SUMEVN-0. 0

SUMODD-F(A,V,N,Z,H)

DO 100 1-1,49

X-2.*I*H

SUMEVN-SUMEVN+F(A,V,N, Z,X)

SUMODD-SUMODD+F(A, V, N, Z, X+H)

100 CONTINUE

SIMP-(H/3.)*(F(A,V,N,Z,B)+4.*SUMODD+2.*SUMEVN+F(A,V,N,Z,PI))

RETURN

END

C

C
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C DEFINE THE MATRIX FUNCTIONS

C CALCULATE ROWS 1 THROUGH 10

C FUNCTION FA REPRESENTS MEMBRANE ENERGY

REAL FUNCTION FA(A,V,I,Z,X)

REAL Q

IF (I .LT. 11) THEN

Q-I-1

FA-(A+COS(X) )*COS(Q*X)*COS(Z*X)+2 .O*V*COS(X)*COS(Q*X)*

+ COS(Z*X)+(COS(X)**2)*COS(Q*X)*COS(Z*X)/(A+COS(X))

ELSE

Q-1-10

FA-(A+COS(X) )*Q*COS(Q*X)*COS(Z*X)+V*(COS(X)*Q*COS(Q

+ *X)*COSCZ*X)-SIN(X)*SIN(Q*X)*COS(Z*X)).COS(X)*SI

+ N(X)*SIN(Q*X)*COS(Z*X)/(A+COS(X))

ENDI F

END

C FUNCTION FAl REPRESENTS BENDING ENERGY

REAL FUNCTION FA1(A,V,I,Z,X)

REAL Q

IF (I .LT. 11) THEN

Q-I-1

FA1-(A+COS(X))*((Q*Z)**2)*COS(Q*X)*COS(Z*X)-V*SIN(X

+ )*(Q*(Z**2)*SIN(Q*X)*COS (Z*X)+(Q**2)*Z*COS (Q*X)*

+ SIN(Z*X) )+(SIN(X)**2)*Q*Z*SIN(Q*X)*SIN(Z*X)/(A+C

+ OS(X))

ELSE

Q-I-_10

FA1-(A+COS(X))*Q*(Z**2)*COS(Q*X)*COS(Z*X)-V*SIN(X)*

+ (Q*Z*COS(Q*X)*SIN(Z*X)+(Z**2)*SIN(Q*X)*COS(Z*X))

+ +(SIN(X)**2)*Z*SIN(Q*X)*SIN(Z*X)/(A+COS(X))

ENDIF

END
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C CALCULATE ROWS 11 THROUGH 19a

C FUNCTION FB REPRESENTS MEMBRANE ENERGY

REAL FUNCTION FB(A,V,I,Z,X)

REAL Q
IF (I .LT. 11) THEN

Q-I-1

FB-(A+COS(X))*Z*COS(Q*X)*C0S(Z*X)+V*(COS(X)*Z*COS(Q

+. *X)*COS(Z*X)-SIN(X)*C0S(Q*X)*SIN(Z*X)).COS(X)*SI

+ N(X)*COS(Q*X)*SIN(Z*X)/(A+COS(x))

ELSE

Q-1-10

FB-(A+COS(X) )*Q*Z*COS(Q*X)*COS(Z*X) .V*SIN(X)*(Z*SIN

+ (Q*X)*COS(Z*X)+Q*COS(Q*X)*SIN(Z*X))+(SIN(X)**2)*

+ SIN(Q*X)*SIN(Z*X)/(A+COS CX))

END IF

END

C FUNCTION FB1 REPRESENTS BENDING ENERGY

REAL FUNCTION FB1(A,V,I,Z,X)

REAL Q
IF (I .T. 11) THEN

Q- 1-1
FBI-(A+COS(X))*Z*(Q**2)*COS(Q*X)*COS(Z*X) .V*SIN(X)*

+ (Q*Z*SIN(Q*X)*COS(Z*X)+(Q**2)*COS(Q*X)*SIN(Z*X))

+ ..(SIN()**2)*Q*SIN(Q*X)*SIN(Z*X)/(A+COS(X))

ELSE

Q-I -10

FB1-(A+COS(X))*Z*Q*COS(Q*X)*COS(Z*X)-V*SIN(X)*(Z*SI

+ N(Q*X)*COS(Z*X).NQ*COS(Q*X)*SIN(Z*X) )+(SIN(X)**2)

+ *SIN(Q*X)*SIN(Z*X)/(A+COS(X))

END IF
END

c

C GAUSSIAN ELIMINATION MODULE
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SUBROUTINE GAUSS (A, B,H, ERROR)

INTEGER M,I,J,K,INDEX

REAL A(M,M),B(M),PIVOT,TEMP,RATIO

LOGICAL ERROR

ERROR-. FALSE.

DO 100 I-1,M

INDEX-I

PIVOT-ABS(A(I ,I))

DO 200 J-I+1,M

IF (ABS(A(J,I)) .GT. PIVOT) THEN

PIVOT-ABS (A(J ,I))

INDEX-J

ENDI F

200 CONTINUE

IF (INDEX .GT. I) THEN

DO 400 K-I,M

TEMP-A(I ,K)

A(I ,K)-A(INDEX,K)

A( INDEX, K)-TEMP

400 CONTINUE

TEMP-B(I)

B(I)-B(INDEX)

B( INDEX)-TEMP

ENDIF

IF (PIVOT .EQ. 0.0) THEN

ERROR - .TRUE.

ELSE

DO 300 J-I+1,M

RATIO-A(J ,I)/A( , I)

DO 500 K-I+1,M

A(J,K)-A(J ,K) -A(I ,K)*RATIO

500 CONTINUE
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300 CONTINUE

ENDIF

100 CONTINUE

END

C

C SUBROUTINE TO SOLVE TRIANGULAR LINEAR SYSTEM

SUBROUTINE BSOLVE(A,B,M,Z)

INTEGER M,I,J

REAL A(M,M),B(M),Z(M),SUM

DO 200 I-M,1,-1

SUM-B(I)

DO 100 J-I+1,M

SUM-SUM-A(I ,J)*Z(J)

100 CONTINUE

Z(I)-SUM/A(I, I)

200 CONTINUE

END
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